Preparation, Electrical Properties, Crystal Structure, and Electronic Structure of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$

Xue-an Chen, Mitsuko Onoda, Hiroaki Wada, ${ }^{1}$ Akira Sato, and Hiroshi Nozaki
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305, Japan
and
Regine Herbst-Irmer
Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany

Received August 17, 1998; in revised form February 12, 1999, accepted February 24, 1999

Abstract

$\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ was synthesized by the solid state reaction of the constituent binary chalcogenides at $830^{\circ} \mathrm{C}$. Its crystal structure was determined on the basis of X-ray data of a nonmerohedral twinned crystal: monoclinic $P 2_{1} / c, a=9.790(2), b=13.205(2)$, $c=9.942(3) \AA, \beta=100.90(2)^{\circ}, Z=8$. The refinement of $\mathbf{1 6 4}$ parameters with 1373 data converged to $R_{1}=0.058$ [for $I>2 \sigma(I)], \mathrm{w} R_{2}=0.176$ (all data), and a twin fraction of $0.274(4)$. The crystal structure may be described as a monoclinic variant of the $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ type. It is characterized by a three-dimensional framework based on a hexagonal close-packing of sulfur atoms. The $\mathbf{C u}$ and Ge atoms are distributed in an ordered manner over $5 / 8$ of the tetrahedral voids, with half of the Cu atoms distorted into triangular sites. The structure was compared with that of $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$, and the difference was ascribed to the formation of more triangular Cu sites in $\mathrm{Cu}_{4} \mathbf{G e S}_{4}$. An extended Hückel tightbinding band calculation was performed to analyze the electronic structure, and electrical resistivity measurements confirm the expected semiconducting behavior of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$. © 1999 Academic Press

INTRODUCTION

The Ag- and Cu -containing chalcogenides have attracted much attention due to their unusual structural features, e.g., forming 1-D, 2-D, and 3-D solids, and their interesting physical properties including ionic conductivity. The interest in these materials has led to our recent discovery of two new structure types of $\mathrm{Cu}_{4} \mathrm{Sn}_{7} \mathrm{~S}_{16}$ and $\mathrm{Cu}_{4} \mathrm{SnS}_{6}(1,2)$. Although the elements Ge and Sn have similar electronic configurations and chemical behaviors, the compounds formed in the $\mathrm{Cu}-\mathrm{Ge}-\mathrm{S}$ system are slightly different from those in the Sn-containing system. For example, the argyrodite-

[^0]type $\mathrm{Cu}_{8} \mathrm{GeS}_{6}$ phase does not appear in the $\mathrm{Cu}-\mathrm{Sn}-\mathrm{S}$ system. Conversely, for the spinel-like $\mathrm{Cu}_{4} \mathrm{Sn}_{7} \mathrm{~S}_{16}$, no corresponding Ge-analogue could be obtained in our experiments. The phase diagram of the ternary system copper-germaniumsulfur has been investigated by Wang (3), who proposed a lot of new phases, and most of them are stable within a narrow temperature region below $500^{\circ} \mathrm{C}$. Above this temperature, three ternary phases were confirmed, of which $\mathrm{Cu}_{2} \mathrm{GeS}_{3}$ was recently characterized by single crystal X-ray diffraction techniques (4). It is a sphalerite superstructure based on a cubic close-packed array of sulfur atoms with space group Cc. $\mathrm{Cu}_{8} \mathrm{GeS}_{6}$ was reported to be dimorphic with a phase transition at $57(2)^{\circ} \mathrm{C}(5)$, the high-temperature phase of which was not quenchable and isotypic with the cubic $\mathrm{Ag}_{8} \mathrm{GeTe}_{6}$ structure (6), and the low-temperature phase crystallized in an orthorhombic $\beta-\mathrm{Cu}_{8} \mathrm{SiS}_{6}$ type (7). $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ was reported to be stable at a temperature above $605^{\circ} \mathrm{C}$. Based on the precession photographs, this compound was predicted to be orthorhombic with possible space group $A 2_{1} 22$ (8). However, its crystal structure remains as yet undetermined. Our present X-ray structure analysis found the space group of this compound actually to be monoclinic $P 2_{1} / c$. In addition, we also report its band electronic structure and electrical behavior.

SAMPLE PREPARATION AND CHARACTERIZATION

The compound $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ was synthesized by a stoichiometric mixture of $\mathrm{Cu}_{2} \mathrm{~S}(1.061 \mathrm{~g}, 6.67 \mathrm{mmol}$; Rare Metallic, 99.9%) and $\mathrm{GeS}_{2}(0.456 \mathrm{~g}, 3.33 \mathrm{mmol}$; Rare Metallic, 99.9%). The sample was ground in an agate mortar and pressed into pellets. The pellets were introduced into a silica tube and sealed at a pressure of less than 10^{-3} Torr. The tubes were held at $700^{\circ} \mathrm{C}$ for one week, then heated gradually to $830^{\circ} \mathrm{C}$,
where they were kept for one month, and then cooled at a rate of $5^{\circ} \mathrm{C} / \mathrm{h}$ to $690^{\circ} \mathrm{C}$ and quenched in cold water. The gray crystals with metallic luster were found in the tubes, and they had the shape of prisms with dimensions up to $0.4 \times 0.4 \times 0.8 \mathrm{~mm}^{3}$. The compound appears to be relatively stable in air and water. The chemical composition of the crystals was determined by means of a JEOL JXA-8600 MX electron microprobe, using $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$ and CuFeS 2 as standards for Ge, Cu, and S , respectively. An approximate atomic ratio $\mathrm{Cu}: \mathrm{Ge}: \mathrm{S}$ of 4.1:1.0:4.2 was obtained, which is in good agreement with that deduced from the structural refinement. In addition, a small amount of triangular platelike crystals was also observed in the reaction product. X-ray four-circle diffractometer data indicated that the reciprocal lattice of these crystals mimicked trigonal symmetry $-3 m$ with a pseudohexagonal cell $a_{\mathrm{h}}=13.986$ and $c_{\mathrm{h}}=17.058 \AA$. They turned out to be the rhombohedral twinning of the $\mathrm{Cu}_{8} \mathrm{GeS}_{6}$ phase (9).

For the accurate lattice constant determination, X-ray powder diffraction data were collected by using the monochromatized $\mathrm{CuK} \alpha 1$ radiation of a Rigaku RINT 2000 diffractometer. The powder XRD data for the structure refinement were recorded in $2 \theta=10^{\circ}-100^{\circ}$ with a step size of 0.02° and a counting time of 15 s .

An electrical resistivity measurement of copper germanium sulfide was made from liquid N_{2} temperature to 300 K by a conventional dc four-probe method. A cold pressed pellet of sample $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ was cut suitably and polished into a rectangular form with the dimension of $2.55 \times 1.70 \times$ $2.30 \mathrm{~mm}^{3}$. Electrical contacts were made using silver paste.

Electronic structure calculations were carried out by means of the extended Hückel method within the framework of the tight-binding approximation (10-11). Atomic parameters for the elements were taken from the literatures (12-13) and they are listed in Table 1. The off-diagonal matrix elements of the Hamiltonian were evaluated by means of a weighted formula (14). A set of $80 k$-points in the irreducible part of the Brillouin zone was used for the average properties calculations (15).

TABLE 1
Extended Hückel Parameters

Atom	Orbital	$H_{\mathrm{ii}}(\mathrm{eV})$	ξ_{1}	ξ_{2}	c_{1}	c_{2}
S	$3 s$	-20.00	2.122			
	$3 p$	-13.30	1.827			
Cu	$4 s$	-11.40	2.200			
	$4 p$	-6.06	2.200			
	$3 d$	-14.00	5.950	2.30	0.5933	0.5744
Ge	$4 s$	-16.00	2.160			
	$4 p$	-9.00	1.850			

Note. H_{ii}, diagonal matrix elements of the EH Hamiltonian; ξ_{i}, the Slater exponents; c_{i}, the expansion coefficients.

STRUCTURE DETERMINATIONS

$\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ has a pseudo-orthorhombic symmetry, and the crystals have a strong tendency to be twinning. Of the eight crystals examined in a Buerger precession camera, all exhibited apparent mmm Laue symmetry. Some reflection spots are very strong and sharp, while some others are split. An attempt to find an untwinned crystal failed. The cell dimensions obtained from the precession photographs $(a=$ $12.565, b=15.215$, and $c=13.205 \AA$) were very similar to those reported by Wang (8). However, the structure could not be solved in any of the possible orthorhombic groups. A structure solution was finally found in the monoclinic centrosymmetric $P 2_{1} / c$ group based on the lattice constants $a=9.790(2), b=13.205(2), c=9.942(3) \AA$, and $\beta=$ $100.90(2)^{\circ}$. This monoclinic primitive unit cell can be transformed to the above orthorhombic C-centered setting by a matrix $(-10-110-10-10)$. The twin may be interpreted either as a rotation twin with twin axis $[10-1]$ or [101] or as a reflection twin with twin plane $(10-1)$ or (101), as that observed in arsenopyrite (16). One twin domain is related to the other by the interchange of the a and c axes. Because a and c differ by a factor of about 0.985 instead of 1 , the overlap of the two reciprocal lattices is not quite exact. It can therefore be classified as a nonmerohedral twin and twin individuals have a volume ratio of about $1: 3$ for the crystal used for the structure determination. Examination of the intensity data indicated that a small amount of reflections $h 0 l$ with $h=2 n$ and $l=2 n+1$ violate the systematic absences of the $P 2_{1} / c$ group, confirming the twin model.

In order to confirm the monoclinic symmetry, X-ray powder diffraction data were recorded using $\mathrm{CuK} \alpha 1$ radiation $(\lambda=1.54051 \AA$). The refined lattice constants $(a=$ 9.790(2), $b=13.205(2), c=9.942(3) \AA$, and $\left.\beta=100.90(2)^{\circ}\right)$ are in good agreement with those obtained from the fourcircle diffractometer data (Table 2). The structure was further refined from powder data (Fig. 1) using the Rietveld method with the program PREMOS (17). Two peaks at about $2 \theta=28.82^{\circ}$ and 59.50° were removed, because they probably represent some small amount of unknown impurity phases which are unstable in air (when the sample was first scanned in a continuous mode, these two peaks were relatively weak. About 30 h later, the same sample together with the etched-glass holder was used for the step-scan-they became very sharp.). The initial positional parameters were taken from the single crystal method. In total, 75 parameters, including structural, polynomial background, and other global parameters, were simultaneously refined, and the pseudo-Voigt function was used to simulate the individual XRD peak profile. The refinement quickly converged to $R w p=5.67 \%$, supporting the proposed structural model.

Intensity data were collected on an Enraf-Nonius CAD4 automatic four-circle diffractometer with graphite

TABLE 2
Some Data and Results of the Structure Determination of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$

Chemical formula	$\mathrm{Cu}_{4} \mathrm{GeS}_{4}$
Formula weight	454.99
Crystal dimension (mm)	$0.22 \times 0.20 \times 0.18$
Space group	$P 2_{1 / c}($ No. 14)
Lattice constants	
From powder data	
$a(\AA)$	9.790(2)
b (\AA)	13.205(2)
$c(\AA)$	9.942(3)
$\beta\left({ }^{\circ}\right.$	100.90(2)
Volume (\AA^{3})	1262.1(5)
From single-crystal data	
$a(\AA)$	9.797(2)
b (\AA)	13.199(2)
$c(\AA)$	9.921(3)
$\beta\left({ }^{\circ}\right.$	100.90(2)
Volume (\AA^{3})	1259.7(5)
Z	8
Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	4.789
Temperature of data collection (K)	293
Wavelength ($\lambda \mathrm{Mo} \mathrm{K} \alpha$) (\AA)	0.71073
Linear absorption coefficient $\mu\left(\mathrm{cm}^{-1}\right)$	191.61
Transmission factors	0.0197-0.1397
$\omega-2 \theta$ scans up to	60°
Range in $h \mathrm{kl}$	$0-13,0-18, \pm 13$
Total number of reflections	8020
Unique reflections refined	1373
Inner residual	$R_{\mathrm{i}}=0.041$
Reflections with $I>2 \sigma(I)$	750
Number of variables	164
BASF (refined twin fraction)	0.274(4)
S (Goodness-of-fit on F^{2})	0.986
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(\mathrm{~F}^{2}\right)+(0.0919 \mathrm{P})^{2}\right] \\ & \text { here } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
$R_{1}[I>2 \sigma(I)]$	0.058
$\mathrm{w} \mathrm{R}_{2}$ (all data)	0.176
$(\Delta / \sigma)_{\text {max }}$	0.000
Largest diff. peak and hole (e \AA^{-3})	1.66, - 1.27

monochromated $\mathrm{Mo} K \alpha$ radiation. Cell dimensions for the single-crystal method were obtained from a least-squares refinement with 25 automatically centered reflections in the range $30^{\circ}<2 \theta<50^{\circ}$. Three standard reflections were remeasured after every 200 reflections with no indication of crystal decay. The intensity data were corrected for Lorentz and polarization effects and for absorption by a Gaussian numerical integration using the measured dimensions of the crystal (18). The crystallographic data and some results are summarized in Table 2.
The structure was solved by direct methods in the SIR-92 program (19) and refined in SHELXL-97 system (20) by full-matrix least-squares methods on F_{0}^{2}. In an earlier work (8), the homogeneous $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ material was synthesized from a starting composition of $69 \mathrm{wt} . \% \mathrm{Cu}_{2} \mathrm{~S}$ and $31 \mathrm{wt} . \%$
GeS_{2}, corresponding to the atomic ratio $\mathrm{Cu}: \mathrm{Ge}: \mathrm{S}=$ 3.91:1.02:4.00. In our present structure refinement, in order to check for deviations from the ideal compositions, occupancy parameters of Cu and Ge atoms were allowed to vary along with the positional and thermal parameters, while the occupancy parameters of S atoms were fixed at 1.0. The resulting occupancies varied between the values of $0.98(2)$ for Cu 3 and 1.00 (2) for Ge 2 . They are all within one standard deviation of the ideal values. Therefore, in the final least-squares cycles, the ideal occupancies were assumed. After averaging equivalent reflections, 3648 unique reflections were obtained, of which 2001 were observed with $I>2 \sigma(I)$. In a first refinement the reciprocal lattices of the two domains were assumed to be exactly superimposed and all of the unique reflections were included in the LS cycles taking the twinning into account (21-22). The R_{1} converged to 0.074 for 2001 observed reflections, the residual electron densities ranged from -2.80 to 3.28 e \AA^{-3}, and the refined twin ratio was $0.219(3)$. But only some reflections overlap nearly exactly, while a few are not affected by the twinning and others overlap only partially. Some partially overlapping reflections have been omitted, because the partial overlap makes it difficult to determine the background accuracy and the contribution of each domain. Assuming a contribution of both domains only for the nearly exact overlapping reflections the refinement of 164 parameters with 1373 data resulted in the residuals of $R_{1}=0.058$ (for $I>2 \sigma(I)$), $w R_{2}=0.176$ (all data), and a twin ratio of 0.274(4). A final difference Fourier map showed maximum and minimum electron densities of 1.66 and -1.27 e \AA^{-3} at positions which are very close to the Cu 1 and Ge 2 sites (0.79 and 1.59 \AA), respectively. Still some partially overlapping reflections are treated as exactly overlapping resulting in relatively high R values and residual electron density, but omitting all of them would reduce the number of data too much. The program MISSYM (23) did not reveal potential additional symmetry. The final positional, the equivalent isotropic and anisotropic displacement parameters, are given in Table 3. Listings of the structure factors are available from the authors.

DISCUSSION

$\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ represents a new structure type (Pearson symbol mP72), and its crystal structure is characterized by a three-dimensional framework of CuS_{4} and GeS_{4} tetrahedra and CuS_{3} triangles (Fig. 2). Each GeS_{4} tetrahedron shares its four vertices with different CuS_{4} tetrahedra and CuS_{3} triangles, and the copper-centered tetrahedra and triangles are interconnected to each other by both corner- and edgesharing. Figure 3 shows one h.c.p. AB sulfur stacking sheet with the filled cations. Four similar sheets are joined together to form one translation period of the monoclinic [101] direction. As can be seen, the sulfur atoms form

FIG. 1. Observed (+) and calculated (-) profiles for the Rietveld refinement of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$. A difference curve is plotted at the bottom. The vertical bars indicate the reflection positions.
a slightly distorted hexagonal close-packed arrangement, and the Cu and Ge atoms are distributed in an ordered manner over the tetrahedral voids between the S-layers, while the octahedral voids remain vacant. Of the available tetrahedral sites, one half are filled with Cu atoms, and one eighth with Ge atoms. Half of the Cu atoms are displaced from the tetrahedral centers toward one of the triangular faces, forming the triangular sulfur coordinations. Because
more than 50% of the tetrahedral voids are filled by cations, numerous relatively short $\mathrm{Cu}-\mathrm{Cu}$ contacts were obseved (Fig. 2). For example, $\mathrm{Cu}-\mathrm{Cu}$ distances ranging from $2.548(7)$ to $3.071(6) \AA$ were found not only between two edge-sharing CuS_{4} tetrahedra ($\mathrm{Cu} 5 \ldots \mathrm{Cu} 7, \mathrm{Cu} 5 \ldots \mathrm{Cu} 8$), and between the edge-sharing CuS_{3} triangles and CuS_{4} tetrahedra (Cu3...Cu8), but also between two corner-sharing CuS_{3} triangles ($\mathrm{Cu} 1 \ldots \mathrm{Cu} 2$). Some of them, like $\mathrm{Cu} 2 \ldots \mathrm{Cu} 2^{\mathrm{g}}$

TABLE 3
Atomic Coordinates, Equivalent Isotropic and Anisotropic Displacement Parameters (\AA^{2}) for $\mathbf{C u}_{4} \mathbf{G e S}_{4}$

Atom	X	y	z	Ueq	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ge1	0.0578(3)	0.4118(2)	0.3110(3)	0.012(1)	0.012(2)	0.012(1)	0.012(1)	0.000(1)	0.004(1)	0.003(1)
Ge2	$0.5496(3)$	0.0909(2)	$0.3025(3)$	0.011(1)	0.013(2)	0.013(1)	0.007(1)	0.000(1)	0.002(1)	0.000(1)
Cu 1	0.0840(4)	0.6900(3)	0.0142(5)	0.036(1)	0.022(3)	0.042(2)	0.037(3)	-0.014(2)	$-0.009(3)$	0.001(2)
Cu 2	0.1283(5)	0.0483(2)	$0.4763(5)$	0.035(1)	0.039(3)	0.034(2)	0.026(2)	-0.010(2)	-0.011(2)	0.016(2)
Cu3	0.1628(5)	0.6809(3)	0.2855(5)	0.036(1)	0.023(3)	0.038(2)	0.045(3)	-0.005(2)	0.000(3)	-0.008(2)
Cu 4	0.1850(4)	0.1539(2)	0.1799(4)	0.026(1)	0.026(2)	0.034(2)	0.020(2)	-0.009(2)	0.005(2)	-0.002(2)
Cu 5	0.2884(5)	0.5801(3)	0.5298(5)	0.051(2)	0.082(5)	0.033(2)	0.044(3)	-0.012(2)	0.033(3)	-0.021(2)
Cu6	0.3525(5)	0.3612(3)	$0.0831(5)$	0.045(1)	0.051(4)	0.049(2)	0.033(3)	-0.018(2)	$0.005(2)$	-0.005(2)
Cu 7	0.4194(4)	0.3369(2)	$0.4275(5)$	0.031(1)	0.022(2)	0.031(2)	0.039(3)	$-0.007(2)$	0.006(2)	0.003(2)
Cu8	$0.6746(5)$	$0.3478(2)$	$0.1719(4)$	$0.031(1)$	$0.037(3)$	$0.034(2)$	0.023(2)	0.008(2)	0.009(2)	$0.005(2)$
S1	0.0091(8)	0.0672(4)	$0.2579(7)$	0.015(2)	0.014(4)	$0.014(2)$	0.019(4)	-0.001(2)	0.006(3)	0.003(3)
S2	0.1204(7)	$0.3273(4)$	$0.1348(6)$	0.013(1)	0.013(4)	0.015(2)	0.012(3)	-0.004(2)	0.002(3)	0.000(3)
S3	0.1285(7)	$0.8319(4)$	0.1423(6)	0.014(1)	0.010(3)	0.019(2)	0.014(3)	-0.006(2)	0.007(3)	$0.005(3)$
S4	$0.2350(7)$	$0.4152(4)$	$0.4888(7)$	0.017(2)	0.021(4)	0.020(2)	0.012(3)	-0.003(2)	0.007(3)	-0.004(3)
S5	$0.2696(7)$	$0.5875(4)$	0.0191(7)	0.016(2)	0.014(4)	0.022(2)	0.012(3)	0.000(3)	0.000(3)	-0.001(3)
S6	$0.3746(7)$	0.1713(4)	$0.3638(7)$	0.017(2)	0.014(4)	0.018(2)	0.019(4)	0.001(3)	0.004(3)	0.001(3)
S7	0.5045(8)	0.4314(4)	0.2590(6)	0.014(1)	0.018(4)	0.014(2)	0.008(3)	-0.002(2)	0.000(3)	0.002(3)
S8	0.6060(8)	0.1745(4)	0.1245(6)	0.017(2)	0.022(4)	0.018(2)	0.011(3)	0.005(3)	0.000(4)	-0.008(3)

[^1]

FIG. 2. Portion of the structure of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ to show atomic coordinations. Large open circles, S ; medium gray circles, Ge ; small black circles, Cu atoms. Both $\mathrm{Ge}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{S}$ bonds are drawn with solid lines, while the $\mathrm{Cu} . . \mathrm{Cu}$ interactions less than $3.08 \AA$ are represented by gray lines. Only cations are labeled for clarity.
of $2.934(9) \AA$ and $\mathrm{Cu} 1 \ldots \mathrm{Cu}^{\mathrm{e}}$ of $3.055(6) \AA$ (Table 4), are between two copper atoms which are located on two opposite triangular faces of a S_{6} octahedron. These distances can be compared to the $\mathrm{Cu}-\mathrm{Cu}$ bond distance of $2.56 \AA$ observed in elemental Cu , and it is not surprising because similar short $\mathrm{Cu}-\mathrm{Cu}$ separations were previously observed in low temperature chalcocite ($2.52 \AA$ upward) and djurleite (2.45 \AA upward) (24), in ternary or quaternary chalcogenides like $\mathrm{Na}_{2} \mathrm{Cu}_{4} \mathrm{~S}_{3} \quad\left(2.581(1) \AA \quad\right.$ upward), $\quad \mathrm{KCu}_{3} \mathrm{Te}_{2}$ (2.494(6) \AA upward) (25), and $\mathrm{K}_{1.5} \mathrm{Dy}_{2} \mathrm{Cu}_{2.5} \mathrm{Te}_{5}$ (2.561(2) \AA) (26). More compounds with short $\mathrm{Cu} . . \mathrm{Cu}$ distances

FIG. 3. Projection along the monoclinic $[-10-1]$ direction of one $A B$ sulfur stacking sheet, with the inserted cations. Large open circles are S atoms in A layer, large cross-hatched circles are S atoms in B layer of the $h c p$ lattice, medium gray circles are Ge atoms, and small black circles are Cu atoms.

TABLE 4
Selected Bond Lengths $\left(\AA\right.$) and Angle (${ }^{\circ}$) for $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$

Ge1-S1 ${ }^{\text {a }}$	2.222(6)	$\mathrm{Cu} 5-\mathrm{S3}{ }^{\text {i }}$	2.391(7)
Ge1-S3 ${ }^{\text {b }}$	2.231(6)	$\mathrm{Cu} 5-\mathrm{S}^{k}{ }^{\text {a }}$	2.634(8)
Ge1-S4	2.231(8)	Cu6-S7	2.269(8)
Ge1-S2	$2.258(6)$	Cu6-S6 ${ }^{\text {j }}$	2.272(8)
Ge2-S6	$2.197(7)$	Cu6-S2	2.464(8)
Ge2-S7 ${ }^{\text {c }}$	2.229(6)	$\mathrm{Cu} 7-\mathrm{S} 4$	2.261(8)
Ge2-S8	2.242(6)	$\mathrm{Cu} 7-\mathrm{S} 6$	2.296 (7)
Ge2-S5 ${ }^{\text {c }}$	2.257(8)	$\mathrm{Cu} 7-\mathrm{S} 7$	2.364(7)
Cu1-S5	2.259(7)	$\mathrm{Cu} 7-\mathrm{S} 8{ }^{f}$	2.417(8)
Cu1-S3	2.262(7)	Cu8-S5 ${ }^{\text {l }}$	2.242(7)
$\mathrm{Cu} 1-\mathrm{S} 2^{\text {d }}$	$2.265(8)$	Cu8-S7	2.299 (7)
$\mathrm{Cu} 2-\mathrm{S} 5^{f}$	2.256 (7)	Cu8-S8	2.406 (7)
$\mathrm{Cu} 2-\mathrm{S} 1$	2.277(9)	$\mathrm{Cu} 8-\mathrm{S3}^{\text {c }}$	2.413 (8)
$\mathrm{Cu} 2-\mathrm{S} 2^{f}$	2.288 (7)	$\mathrm{Cu} 1-\mathrm{Cu} 3$	$2.665(7)$
$\mathrm{Cu} 3-\mathrm{S} 1^{a}$	$2.236(7)$	$\mathrm{Cu} 1-\mathrm{Cu} 2^{a}$	2.812(6)
Cu3-S8 ${ }^{\text {h }}$	2.273(9)	$\mathrm{Cu} 1-\mathrm{Cu} 3^{e}$	3.055(6)
Cu3-S3	2.436 (7)	$\mathrm{Cu} 2-\mathrm{Cu} 6^{f}$	2.548 (7)
$\mathrm{Cu} 4-\mathrm{S} 4{ }^{j}$	2.245 (7)	$\mathrm{Cu} 2-\mathrm{Cu} 2^{g}$	2.934 (9)
Cu 4 -S1	2.320 (7)	$\mathrm{Cu} 3-\mathrm{Cu} 8^{h}$	2.704(5)
Cu4-S6	$2.357(8)$	$\mathrm{Cu} 3-\mathrm{Cu} 5$	$2.838(7)$
Cu 4 -S2	$2.394(6)$	$\mathrm{Cu} 5-\mathrm{Cu} 7^{k}$	3.018(7)
Cu5-S4	2.258(7)	$\mathrm{Cu} 5-\mathrm{Cu} 8^{k}$	3.071(6)
$\mathrm{Cu} 5-\mathrm{S} 8^{\text {h }}$	$2.362(8)$		
S1 ${ }^{\text {a }}$-Ge1-S3 ${ }^{\text {b }}$	107.2(3)	S4 ${ }^{j}-\mathrm{Cu} 4-\mathrm{S} 2$	108.8(3)
S1 ${ }^{\text {a }}$-Ge1-S4	111.4(3)	S1-Cu4-S2	110.4(3)
S3 ${ }^{\text {b }}$-Ge1-S4	112.9(3)	S6-Cu4-S2	101.2(3)
S1 ${ }^{a}$-Ge1-S2	109.0(2)	S4-Cu5-S8 ${ }^{\text {h }}$	120.4(3)
S3 ${ }^{\text {b }}$-Ge1-S2	106.3(2)	$\mathrm{S} 4-\mathrm{Cu} 5-\mathrm{S} 3{ }^{i}$	113.8(3)
S4-Ge1-S2	109.9(3)	$\mathrm{S} 8^{h}-\mathrm{Cu} 5-\mathrm{S} 3^{i}$	117.0(3)
S6-Ge2-S7 ${ }^{\text {c }}$	112.1(3)	$\mathrm{S} 4-\mathrm{Cu} 5-\mathrm{S} 7^{k}$	101.9(3)
S6-Ge2-S8	107.6(3)	$\mathrm{S} 8^{h}-\mathrm{Cu} 5-\mathrm{S} 7^{k}$	100.5(3)
S7 ${ }^{\text {c }}$-Ge2-S8	109.3(2)	$\mathrm{S} 3^{i}-\mathrm{Cu} 5-\mathrm{S} 7^{k}$	97.4(3)
S6-Ge2-S5 ${ }^{\text {c }}$	109.2(3)	S7-Cu6-S6 ${ }^{\text {j }}$	130.5(3)
S7 ${ }^{\text {c }}$-Ge2-S5 ${ }^{\text {c }}$	107.9(3)	S7-Cu6-S2	114.2(3)
S8-Ge2-S5 ${ }^{\text {c }}$	110.9(3)	S6 ${ }^{j}-\mathrm{Cu} 6-\mathrm{S} 2$	115.1(3)
S5-Cu1-S3	114.6(3)	S4-Cu7-S6	112.9(3)
S5-Cu1-S2 ${ }^{\text {d }}$	124.2(3)	S4-Cu7-S7	110.8(2)
S3-Cu1-S2 ${ }^{\text {d }}$	120.2(3)	S6-Cu7-S7	112.4(3)
S5 ${ }^{f}-\mathrm{Cu} 2-\mathrm{S} 1$	116.9(3)	S4-Cu7-S8 ${ }^{f}$	109.3(3)
$\mathrm{S} 5^{f}-\mathrm{Cu} 2-\mathrm{S}^{2}{ }^{f}$	122.7(3)	S6-Cu7-S8 ${ }^{f}$	103.9(3)
S1-Cu2-S2 ${ }^{f}$	120.0(3)	S7-Cu7-S8 ${ }^{f}$	107.1(3)
S1 ${ }^{a}-\mathrm{Cu} 3-\mathrm{S} 8^{h}$	135.1(3)	S5 ${ }^{l}$-Cu8-S7	116.5(3)
S1 ${ }^{\text {a }}$-Cu3-S3	114.9(3)	S5 ${ }^{l}$-Cu8-S8	107.5(3)
S $8^{h}-\mathrm{Cu} 3-\mathrm{S} 3$	106.1(3)	S7-Cu8-S8	109.6(3)
S4 ${ }^{j}$ - $\mathrm{Cu} 4-\mathrm{S} 1$	112.1(3)	S5 ${ }^{l}-\mathrm{Cu} 8-\mathrm{S} 3{ }^{\text {c }}$	113.2(3)
S4 ${ }^{j}-\mathrm{Cu} 4-\mathrm{S} 6$	115.5(3)	S7-Cu8-S3 ${ }^{\text {c }}$	106.5(3)
S1-Cu4-S6	108.3(3)	S8-Cu8-S3 ${ }^{\text {c }}$	102.7(3)

[^2]($d^{10}-d^{10}$ interactions) have been recently reviewed (27). The copper distribution forms a zigzag chain (Fig. 2), suggesting that the title compound may be an ionic conductor at high temperature.

Table 4 lists the selected bond distances and angles concerning the coordination geometries of the cation-centered sulfur polyhedra. The tetrahedral environments around two germanium atoms are almost regular, with the $\mathrm{S}-\mathrm{Ge}-\mathrm{S}$ angles being near the tetrahedral value. The $\mathrm{Ge}-\mathrm{S}$ bond lengths lie within a narrow range of $2.197(7)$ to $2.258(6) \AA$, which are in good agreement with those found in compounds such as $\mathrm{Cu}_{2} \mathrm{GeS}_{3}$ (2.185(5)-2.328(4) \AA) (4), and $\mathrm{KLaGeS}_{4}(2.203(1)-2.220(1) \AA)(28)$. There are eight crystallographically distinct copper atoms, of which $\mathrm{Cu} 1, \mathrm{Cu} 2$, Cu 3 , and Cu 6 are in triangular coordination and $\mathrm{Cu} 4, \mathrm{Cu} 5$, Cu 7 , and Cu 8 are in tetrahedral coordination. Both coordination configurations are distorted. $\mathrm{The} \mathrm{Cu}-\mathrm{S}$ bonds in the tetrahedra range from $2.242(7)$ to $2.634(8) \AA$, and the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles from $97.4(3)^{\circ}$ to $120.4(3)^{\circ}$; in the triangles the respective ranges are $2.236(7)$ to $2.464(8) \AA$ and $106.1(3)^{\circ}$ to $135.1(3)^{\circ}$. Depending on the considered sites, the mean values of the $\mathrm{Cu}-\mathrm{S}$ distances extend from $2.329(8)$ to $2.411(8) \AA$ for the tetrahedral and $2.262(8)$ to $2.335(8) \AA$ for the triangular sites, respectively. They are closely comparable to those found in the literature. For example, the average $\mathrm{Cu}-\mathrm{S}$ bond lengths are 2.333(1) and 2.342(2) \AA in $\mathrm{Cu}_{4} \mathrm{TiS}_{4}$ where both of the copper sites are four-coodinated (29), and for the triangular copper atom the mean value of $2.33(1) \AA$ was observed in $\mathrm{TlCu}_{3} \mathrm{~S}_{2}(30)$ and $2.1915(4) \AA$ in covellite CuS (31). The longest average $\mathrm{Cu}-\mathrm{S}$ distance is on the Cu 5 site ($2.411(8) \AA$). This is understandable because each Cu5centered tetrahedron shares two edges with $\mathrm{Cu} 7-$ and $\mathrm{Cu} 8-$ centered tetrahedra (Fig. 2), forming three elongated and one shortened $\mathrm{Cu}-\mathrm{S}$ bonds.
In this structure, two Ge and eight S positions are well defined, as revealed by their smaller and comparable equivalent thermal factors $U_{\text {eq }}$ (Table 3), while the Cu atoms show abnormally high atomic displacement parameters. This is a specific characteristic of the d^{10} cations and has been observed in many other Ag^{+}- and Cu^{+}-containing chalcogenides like $\mathrm{CuVP}_{2} \mathrm{~S}_{6}$ (32) and $\mathrm{AgScP}_{2} \mathrm{~S}_{6}$ (33). It was explained as resulting from a static disorder generated by several off-center displacements of the cations (34), and these displacements were attributed to a second-order Jahn-Teller effect involving the filled d orbitals (35).
The crystal structure of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is closely related to that of $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ (36), and it may be described as a monoclinic variant of the $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ type. The space group $P 2_{1} / c$ of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is a maximal nonisomorphic subgroup (index 2) of the group Pnma adopted by $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$. The symmetry reduction represents a step which is "translationengleich." The lattice vectors of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}(\mathbf{a}, \mathbf{b}$, and $\mathbf{c})$ are related to those of $\mathrm{Cu}_{4} \mathrm{SnS}_{4}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right.$, and $\left.\mathbf{a}_{3}\right)$ in the following manner: $\mathbf{a}=\mathbf{a}_{2}-\mathbf{a}_{3}, \mathbf{b}=\mathbf{a}_{1}$, and $\mathbf{c}=-\mathbf{a}_{2}-\mathbf{a}_{3}$. Figure 4 shows the projection of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ structure along the monoclinic [$-10-1]$ vector together with the c-axis projection of the $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ structure. For simplicity, only half a translation period of the monoclinic [$10-1]$ vector was displayed, and

FIG. 4. The crystal structure of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ projected along the monoclinic [$-10-1]$ vector as compared to the orthorhombic (Pnma) structure of $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$. $\mathrm{Ge}-\mathrm{S}(\mathrm{Sn}-\mathrm{S})$ and $\mathrm{Cu}-\mathrm{S}$ bonds are drawn with thin solid lines, while the $\mathrm{Cu} . . . \mathrm{Cu}$ contacts less than $2.9 \AA$ are represented by thick gray lines. The layers A, B, A^{\prime}, and B^{\prime} in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ correspond to $y=0,0.25$, 0.5 and 0.75 , respectively, and the similar layers in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ which correspond to those in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ are also marked.
the other half of the structure is similar and can be obtained from this arrangement by a translation [101]/2 together with $[10-1] / 2$. It can be seen that the germanium- and copper-centered sulfur polyhedra form distorted hexagonal windows running along this projection direction, and the centers of these windows correspond to the unoccupied octahedral sites. Although copper atoms were often found to be statistically distributed over several positions (32), our difference Fourier analyses did not reveal any significant electron-density peak within these pseudohexagonal channels. Both structures were arbitrarily divided into atomic layers for comparison. It was observed that the layers B and B^{\prime} in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ are situated on the mirror plane of the orthorhombic (Pnma) structure and therefore they are completely flat, while the corresponding layers in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ are strongly puckered with an amplitude of about $\pm 0.968 \AA$. Similarly, the layers designated A and A^{\prime} in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ are slightly distorted ($\Delta y= \pm 0.095 \AA$), whereas the corresponding layers in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ are apparently more distorted, with atomic displacements out of the plane by about $\pm 0.531 \AA$. A comparison of the atomic parameters demonstrates that the Ge and S positions in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ remain close to those of Sn and S atoms in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$, while some of the Cu sites show much greater distortions. For instance, Cu 2 and Cu 3 atoms at the layers B and B^{\prime} of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ shift toward their neighboring atomic layers (A and A^{\prime}) to form relatively short $\mathrm{Cu}-\mathrm{Cu}$ contacts. The observed interlayer
$\mathrm{Cu} 1-\mathrm{Cu} 2, \mathrm{Cu} 1-\mathrm{Cu} 3$, and $\mathrm{Cu} 3-\mathrm{Cu} 8$ distances are 2.812(6), $2.665(7)$, and $2.704(5) \AA$, respectively, significantly shorter than the corresponding ones in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}(2.864 \AA$). It is noteworthy that one half of Cu atoms in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ have trigonal sulfur environments, while only one quarter of Cu atoms in $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ have such coordinations. The displacements of the tetrahedral Cu atoms out of the mirror plane result in the formation of more triangular Cu sites, which in turn causes a lowering of the space-group symmetry in going from $\mathrm{Cu}_{4} \mathrm{SnS}_{4}$ to $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$. The fact that $\mathrm{Cu}(\mathrm{I})$ favors the lower coordination number was explained as a secondorder Jahn-Teller coupling between the occupied $3 d$ and the empty $4 s$ orbitals (35).

The shortest $\mathrm{S} \ldots . \mathrm{S}$ contact in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is $3.582(9) \AA$, which is close to the van der Waals radii sum of $3.60 \AA$ (37) and significantly longer than $2.07 \AA$, expected for $\mathrm{S}-\mathrm{S}$ single bonds (38). The lack of close $\mathrm{S}-\mathrm{S}$ interactions as well as the semiconducting behavior is consistent with the closed-shell description $\mathrm{Cu}_{4}^{1+} \mathrm{Ge}^{4+} \mathrm{S}_{4}^{2-}$. This structural model was further checked by the bond valence sum (BVS) analysis using Brown's formula (39, 40). The resulting BVS values range from 3.84 to 3.89 for $\mathrm{Ge}, 0.86$ to 1.13 for Cu , and -1.94 to -2.00 for S , respectively, consistent with their assigned formal valences.

Tight-binding band structure calculations were performed on the three-dimensional $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ material of the complete structure. The diagrams of the total and projected density of states (DOS) were displayed in Fig. 5. Inspection of the projected DOS curves shows that the upper valence band is primarily composed of $\mathrm{Cu} 3 d$ and $\mathrm{S} 3 p$ orbitals, with the $\mathrm{S} 3 p$ penetrating into the $\mathrm{Cu} 3 d$ states, indicating the strong $\mathrm{Cu}-\mathrm{S}$ covalent hybridizations, whereas the conduction band has mainly $\mathrm{Cu} 4 s$ and $4 p$ as well as Ge $4 s$ and $4 p$ character, and the latter is still higher in energy. The bands in the energy interval from -18.0 to -17.0 eV are essentially constructed from $\mathrm{Ge}-\mathrm{S}$ covalent bonding interaction

FIG. 5. DOS and COOP curves for $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$.
with more contributions from sulfur atoms, and those at even lower energies (about -21 eV) are basically of S 3 s character and were not shown in the figure. It is clear that the Fermi energy is at the top of the valence band, and there is a gap of about 4.0 eV between the filled valence and the empty conduction bands. Therefore, $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is expected to be a semiconducting or insulating type material, in accordance with the resistivity measurements.

The crystal orbital overlap population (COOP) curves in Fig. 5 indicate that Ge-S bonding is optimized, i.e., all of the bonding region is occupied and the antibonding region empty. The germanium-sulfur interactions are indeed quite strong, with the large overlap populations of 0.599-0.650. For the $\mathrm{Cu}-\mathrm{S}$ bond, the strongly bonding peaks are situated in the lower energy region of the displayed window, while only a weak antibonding peak is observed near the Fermi level. This is due to mixing of the $\mathrm{Cu} 4 s$ and $4 p$ orbitals, which enter in a bonding way toward $\mathrm{S} 3 p$ orbitals, thus weakening the $\mathrm{Cu} 3 d-\mathrm{S} 3 p$ antibonding interactions. The calculated $\mathrm{Cu}-\mathrm{S}$ overlap populations (o.p.) range from 0.107 to 0.475 , depending on the distances (2.236(7)-2.634(8) \AA), and these values are very comparable to those reported in $\mathrm{BaCu}_{4} \mathrm{~S}_{3}$ (o.p. $0.07-0.426$ for $\mathrm{Cu}-\mathrm{S}$ distances of 2.237-2.701 \AA) (41). The COOP plot indicates that both $\mathrm{Cu}-\mathrm{Cu}$ bonding and antibonding $3 d$ states are occupied, and the antibonding states are slightly weaker than the corresponding bonding ones owing to the second-order mixing of the $\mathrm{Cu} 4 s$ and $4 p$ orbitals into $3 d$ orbitals. As a consequence, the integrated COOP gives the small positive values of $0.026,0.025$, and 0.011 for three typical $\mathrm{Cu} . . \mathrm{Cu}$ contacts of $2.665(7), 2.704(5)$, and $2.812(6) \AA$, respectively. From these small positive numbers, we cannot conclude that the metal-metal bonds are formed among the closed-shell Cu^{+}, because at a computational level, net attractive $\mathrm{Cu}(\mathrm{I})-\mathrm{Cu}(\mathrm{I})$ interactions require the introduction of configuration interaction into Hartree-Fock solutions. It has been shown that interactions between two closed-shell $\mathrm{Au}^{+}\left(d^{10}\right)$ species are repulsive at the Hartree-Fock level (42). Recent density functional calculations on $\mathrm{Cu}_{2}(h p p)_{2}\left(h p p^{-}=\mathrm{C}_{7} \mathrm{~N}_{3} \mathrm{H}_{12}=1,3,4,6,7,8-\right.$ hexahydro-2H-pyrimido [1,2-a $]$ pyrimidinate) and $\mathrm{Cu}_{3}[(p-$ tol $) \mathrm{N}_{5}(p$-tol $\left.)\right]_{3}\left(p\right.$-tol $=\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}=p$-tolyl), which have even shorter $\mathrm{Cu} . . \mathrm{Cu}$ distances of 2.453(1) and 2.353(2) \AA, respectively, showed that the close approach of the copper atoms is predictable without involving any significant amount of covalent bonding (43). Therefore, the $\mathrm{Cu} . . \mathrm{Cu}$ distances in $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ may be due to the packing necessities and may unnecessarily imply the metal-metal bonding. In addition, the computed overlap population values for three different short S...S contacts (3.582(9), 3.584(7) and $3.591(8) \AA$) are all slightly negative ($-0.020,-0.019$, and -0.019 , respectively), indicating that there is no significant sulfur-sulfur bonding, in agreement with the van der Waals radii values.

FIG. 6. Electrical resistivity of $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ as a function of temperature.

Figure 6 gives a plot of the resistivity ρ vs T for $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$. Resistivity changed from 115 to $145 \mathrm{~m} \Omega \cdot \mathrm{~cm}$ in the temperature range of 300 to 78 K . No phase transition was observed. The electrical property indicates that $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is a semiconducting material. The curvature shows an extrinsic semiconducting behavior with an activation energy of approximately 0.0023 eV at temperatures between 77.8 and 300 K . This result is consistent with the fact that $\mathrm{Cu}_{4} \mathrm{GeS}_{4}$ is a normal valence compound.

ACKNOWLEDGMENTS

X.-A. C. thanks JST for a STA fellowship. The authors thank Mr. K. Kosuda for carrying out the EPMA analyses.

REFERENCES

1. X. -a. Chen, H. Wada, A. Sato, and M. Mieno, J. Solid State Chem. 139, 144 (1998).
2. X.-a. Chen, H. Wada, and A. Sato, Mater. Res. Bull. 34, No. 2 (1999).
3. N. Wang, Neues Jahrb. Mineral. Abh. 159, 137 (1988).
4. L. M. de Chalbaud, G. D. de Delgado, J. M. Delgado, A. E. Mora, and V. Sagredo, Mater. Res. Bull. 32, 1371 (1997).
5. Gotz, "Institut fur Kristallographie der Aachen, West Germany, ICDD Grant-in-Aid." 1988.
6. N. Rysanek, P. Laruelle, and A. Katty, Acta Crystallogr. Sect. B 32, 692 (1976).
7. M. Levalois and G. Allais, Acta Crystallogr. Sect. B 37, 1816 (1981).
8. N. Wang, Neues Jahrb. Mineral. Abh. 126, 141 (1976).
9. N. Wang and W. Viaene, Neues Jahrb. Mineral. Monatsh. 442 (1974).
10. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc. 100, 6093 (1978).
11. M. Brändle and G. Calzaferri, Helv. Chim. Acta 76, 2350 (1993).
12. J. Llanos, P. Valenzuela, C. Mujica, and A. Buljan, J. Solid State Chem. 122, 31 (1996).
13. D. M. Proserpio, G. Artioli, S. Mulley, G. Chacon, and C. Zheng, Chem. Mater. 9, 1463 (1997).
14. J. H. Ammeter, H.-B. Bürgi, J. C. Thibeault, and R. Hoffmann, J. Am. Chem. Soc. 100, 3686 (1978).
15. R. Ramirez and M. C. Böhm, Int. J. Quantum Chem. 34, 571 (1988).
16. M. J. Buerger, Z. Kristallogr. 95, 83 (1936).
17. A. Yamamoto, Acta Crystallogr. Sect. A 48, 476 (1992).
18. B. A. Frenz and Associates, "SDP for Windows Reference Manual, Inc." College Station, TX, 1995.
19. A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi, J. Appl. Crystallogr. 26, 343 (1993).
20. G. M. Sheldrick, "SHELXL97, a Program for the Refinement of Crystal Structures." University of Göttingen, Germany, 1997.
21. G. B. Jameson, Acta Crystallogr. Sect. A 38, 817 (1982).
22. R. Herbst-Irmer and G. M. Sheldrick, Acta Crystallogr. Sect B 54, 443 (1998).
23. Y. Le Page, J. Appl. Crystallogr. 21, 983 (1988).
24. H. T. Jr. Evans, Z. Kristallogr. 150, 299 (1979).
25. G. Savelsberg and H. Schäfer, Mater. Res. Bull. 16, 1291 (1981).
26. F. Q. Huang, W. Choe, S. Lee, and J. S. Chu, Chem. Mater. 10, 1320 (1998).
27. P. Pyykkö, Chem. Rev. 97, 597 (1997).
28. P. Wu and J. A. Ibers, J. Solid State Chem. 107, 347 (1993).
29. K. O. Klepp and D. Gurtner, J. Alloys Compd. 243, 19 (1996).
30. K. Klepp and K. Yvon, Acta Crystallogr. Sect. B 36, 2389 (1980).
31. M. Ohmasa, M. Suzuki and Y. Takéuchi, Mineral. J. 8, 311 (1977).
32. E. Durand, G. Ouvrard, M. Evain, and R. Brec, Inorg. Chem. 29, 4916 (1990).
33. S. Lee, P. Colombet, G. Ouvrard, and R. Brec, Inorg. Chem. 27, 1291 (1988).
34. F. Boucher, M. Evain, and R. Brec, J. Alloys Compound 215, 63 (1994).
35. J. K. Burdett and O. Eisenstein, Inorg. Chem. 31, 1758 (1992).
36. S. Jaulmes, J. Rivet, and P. Laruelle, Acta Crystallogr. Sect. B 33, 540 (1977).
37. L. Pauling, "The Nature of the Chemical Bond." Cornell University Press, Ithaca, 1960.
38. S. A. Sunshine, D. Kang, and J. A. Ibers, J. Am. Chem. Soc. 109, 6202 (1987).
39. I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985).
40. T. Balic Zunic and I. Vickovic, J. Appl. Crystallogr. 29, 305 (1996).
41. A. Ouammou, M. Mouallem-Bahout, O. Peña, J.-F. Halet, J.-Y. Saillard, and C. Carel, J. Solid State Chem. 117, 73 (1995).
42. P. Pyykkö, J. Li, and N. Runeberg, Chem. Phys. Lett. 218, 133 (1994).
43. F. A. Cotton, X. Feng, and D. J. Timmons, Inorg. Chem. 37, 4066 (1998).

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: 81-298-52-7449; E-mail: wadah@nirim.go.jp.

[^1]: Notes. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left(\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\cdots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right)$.

[^2]: Note. The lattice constants obtained from powder data were used to calculate the interatomic distances. Symmetry codes: ${ }^{a}-x, y+1 / 2$, $-z+1 / 2 ;{ }^{b}-x, y-1 / 2,-z+1 / 2 ;^{c}-x+1, y-1 / 2,-z+1 / 2 ;{ }^{d}-x$, $-y+1,-z ;{ }^{e} x,-y+3 / 2, z-1 / 2 ;{ }^{f} x,-y+1 / 2, z+1 / 2 ;{ }^{g}-x,-y$, $-z+1 ;{ }^{h}-x+1, \quad y+1 / 2, \quad-z+1 / 2 ; \quad{ }^{i} x, \quad-y+3 / 2, \quad z+1 / 2 ;{ }^{j} x$, $-y+1 / 2, z-1 / 2 ;{ }^{k}-x+1,-y+1,-z+1 ;{ }^{l}-x+1,-y+1,-z$.

